湖北自考網(wǎng)旗下頻道:湖北專升本網(wǎng)為考生提供湖北專升本信息服務 ,僅供學習交流使用,官方信息以湖北教育考試院為準。

湖北自考網(wǎng)

普通專升本
專升本首頁 升本簡章 升本院校 升本專業(yè) 升本答疑 升本經(jīng)驗 網(wǎng)上報名
專升本專題:
專升本指南 報名時間 報名條件 考試科目 考試大綱 考前輔導 考試經(jīng)驗 升本問答 模擬考試 成績查詢 錄取名單 自考專升本 成考專升本
湖北專升本網(wǎng) > 外省專升本 > 2015年井岡山大學專升本《高等數(shù)學》考試大綱網(wǎng)站地圖

2015年井岡山大學專升本《高等數(shù)學》考試大綱

來源:湖北專升本網(wǎng) 整編:湖北自考網(wǎng) 時間:2014-10-13 瀏覽:0

專升本培訓


井岡山大學2015年專升本《高等數(shù)學》考試大綱


湖北專升本網(wǎng)獲悉,2015年井岡山大學專升本《高等數(shù)學》考試大綱如下:


關于考試大綱的幾點說明

1.高等數(shù)學是理工類本科專業(yè)后續(xù)課程的基礎,是教學計劃中的一門專業(yè)基礎課.

2.考試要求:本課程的考試要求既要考核知識,又要考核能力,因此要求考生復習本課程時應注意系統(tǒng)掌握本大綱所規(guī)定的基礎知識,基本方法,提高運算能力和邏輯思維能力,并能運用數(shù)學知識分析,解決一些實際問題.

3.本大綱中將基本要求分為由低到高的三個等級,對概念和理論性的知識,分別用“知道”、“了解”、“理解”三級區(qū)分,對運算方法的知識分別用“會或能”、“掌握”、“熟練掌握”三級區(qū)分.

4.本課程考試方式為閉卷,答卷時間為120分鐘,采用百分制,試題的難度按易、中、難三個層次的比例約為30:50:20.

5.題型

填空題,共5小題,每小題3分,計15分.

單項選擇題(四個備選答案中有且只有一個正確)共5小題,每小題3分,計15分.

計算題,共5小題,每小題10分,計50分.

綜合或應用題1題,計10分.

證明題1題,計10分.

6.參考書目: 劉忠東,羅賢強等編《微積分》(上、下)中國傳媒大學出版社


考試內容及要求

一、函數(shù)、極限與連續(xù)

1.考核知識點

(1)函數(shù):函數(shù)的概念,函數(shù)的幾種特性,分段函數(shù),復合函數(shù)與反函數(shù),初等函數(shù).

(2)極限:數(shù)列的極限,函數(shù)的極限,無窮小與無窮大,極限的運算法則,兩個重要極限,無窮小的比較.

(3)連續(xù):函數(shù)的連續(xù)性與間斷點,閉區(qū)間上連續(xù)函數(shù)的性質.

2.考核目標和要求

(1)理解和掌握函數(shù)、極限與連續(xù)的概念.

(2)能熟練地求函數(shù)的定義域,初等函數(shù)及分段函數(shù)的函數(shù)值.

(3)熟練地應用極限的四則運算法則,兩個重要極限求數(shù)列或函數(shù)極限.

(4)了解無窮小量與無窮大的概念與關系,會對無窮小的階進行比較.

(5)掌握函數(shù)左、右極限與極限的關系.

(6)了解函數(shù)連續(xù)性的概念,會判斷分段函數(shù)在分段點處的連續(xù)性.

(7)會求函數(shù)的間斷點和連續(xù)區(qū)間以及會判斷間斷點的類型.

(8)知道閉區(qū)間上連續(xù)函數(shù)的性質.

二、導數(shù)與微分

1.考核知識點

(1)導數(shù)的定義,導數(shù)的幾何意義,可導與連續(xù)的關系.

(2)求導法則,導數(shù)的四則運算法則,復合函數(shù)的求導法則,反函數(shù)的求導法則,隱函數(shù)及參數(shù)方程所確定的函數(shù)的求導法則,基本求導公式.

(3)高階導數(shù).

(4)微分的定義,求法及運算法則.

2.考核目標及要求

(1)理解導數(shù)定義,了解微分的概念,會求曲線上一點處的切線斜率及切線方程,會用導數(shù)定義求一些簡單函數(shù)的導數(shù),知道可導與連續(xù)的關系.

(2)熟練地運用求導法則求函數(shù)的導數(shù),熟練地求函數(shù)的微分.

(3)會求初等函數(shù)的高階導數(shù).

三、導數(shù)的應用

1.考核知識點

(1)中值定理、羅爾定理、拉格朗的中值定理,柯西中值定理.

(2)導數(shù)的應用,洛比達法則,函數(shù)的單調性,函數(shù)的極值,函數(shù)的凹凸性,拐點,曲線的漸近線(水平、垂直)簡單函數(shù)圖形的描繪,最大值、最小值應用問題.

2.考核目標和要求及重難點

(1)會敘述羅爾定理,拉格朗的中值定理,柯西中值定理,掌握用這三個定理作一些命題的證明.

(2)熟練地運用洛比達法則求各種未定型的極限.

(3)掌握用導數(shù)判定函數(shù)的單調性和極值點,會求函數(shù)的單調區(qū)間和極值,會用函數(shù)的單調性證明不等式.

(4)會求函數(shù)的凹凸區(qū)間和拐點,會求曲線的水平和垂直浙近線.

(5)會利用導數(shù)方法作簡單函數(shù)的圖形.

(6)掌握用導數(shù)方法求解最值應用問題.

四、不定積分

1.考核知識點

(1)原函數(shù)與不定積分的概念.

(2)基本積分公式,換元積分法和分部積分法.

(3)簡單有理函數(shù)的積分.

2.考核目標和要求

(1)掌握原函數(shù)與不定積分的概念,能熟練地應用基本積分公式,知道求導與求不定積分兩種運算的關系.

(2)熟練地利用換元法與分部積分法求不定積分.

(3)會求一些簡單有理函數(shù)的不定積分.

五、定積分及其應用

1.考核知識點

(1)定積分的定義與性質.

(2)變上限的定積分,原函數(shù)存在定理與牛頓—萊布尼茲公式.

(3)定積分的換元法與分部積分法.

(4)廣義積分.

(5)定積分的應用,平面圖形的面積和旋轉體的體積.

2.考核目標和要求

(1)知道定積分的定義,了解定積分的性質和積分中值定理.

(2)了解變上限的定積分,原函數(shù)存在定理,熟練地應用牛頓—萊布尼茲公式計算定積分.

(3)熟練掌握用定積分的換元法和分部積分法求定積分.

(4)會計算簡單的廣義積分.

(5)掌握有關用積分性質,變上限的定積分或換元法作一些命題的證明.

(6)了解微元法,掌握用定積分求平面圖形的面積或旋轉體的體積.

六、向量代數(shù)與空間解析幾何

1.考核知識點

(1)向量的概念及向量的線性運算.

(2)空間直角坐標系,向量的坐標表示.

(3)向量的數(shù)量積與向量積.

(4)平面與空間直線的各種方程.

(5)兩平面間,兩直線間,平面與直線間的位置關系.#p#分頁標題#e#

(6)曲面與空間曲線的方程.

(7)柱面、旋轉曲面、橢球面、橢圓拋物面、單葉雙曲面及雙葉雙曲面.

2.考核目標及要求

(1)理解向量的定義,向量的模、方向的概念.

(2)熟練掌握向量的加、減、數(shù)乘、數(shù)量積及向量積的運算.

(3)知道向量平行與垂直的條件.

(4)根據(jù)條件,熟練地建立平面和直線的各種形式的方程.

(5)能正確判斷平面與平面、直線與直線、平面與直線的位置關系.

(6)能正確識別曲面的方程及形狀.

七、多元函數(shù)的微積分學

1.考核知識點

(1)多元函數(shù)的定義,二元函數(shù)的極限與連續(xù).

(2)偏導數(shù)的概念及計算,高階偏導數(shù),全微分的概念及計算.

(3)多元復合函數(shù)的求導法則及隱函數(shù)的求導法.

(4)偏導數(shù)的幾何應用.

(5)多元函數(shù)的極值,條件極值及拉格朗日乘數(shù)法.

(6)二重積分的概念及性質.

(7)二重積分的計算—直角坐標系及利用極坐標計算.

(8)二重積分的簡單應用—立體的體積及曲面的面積.

2.考核目標及要求及重難點

(1)知道二元函數(shù)和二元函數(shù)極限與連續(xù)的定義,會求二元函數(shù)的定義域.

(2)熟練掌握求偏導數(shù)的方法,會求二元函數(shù)的二階偏導數(shù).

(3)掌握二元復合函數(shù)及隱函數(shù)的求導法則,會求三元復合函數(shù)及隱函數(shù)的偏導數(shù).

(4)了解二、三元函數(shù)全微分的概念,會求二、三元函數(shù)的全微分.

(5)會求空間曲線的切線與法平面、曲面的切平面與法線方程.

(6)了解二元函數(shù)極值與條件極值的概念,會求二元函數(shù)的極值與條件極值.

(7)知道二重積分的定義和性質.

(8)熟練掌握化二重積分為二次積分求二重積分的方法,包括直角坐標系中及利用極坐標變換的方法.

八、常微分方程

1.考核知識點

(1)微分方程的定義,階及解的概念.

(2)一階微分方程:可分離變量的微分方程,齊次方程,一階線性微分方程.

(3)可降階的高階微分方程及微分方程.

(4)二階常系數(shù)線性齊次和非齊次微分方程.

2.考核目標及要求

(1)了解微分方程的定義,階及解的概念,熟練掌握可分離變量方程和一階非齊次線性方程的解法,掌握齊次方程的解法.

(2)掌握可降階的三類微分方程的解法.

(3)掌握二階常系數(shù)齊次線性方程的解法.

(4)掌握二階常系數(shù)非齊次線性方程中 和 時通特及特解的求法.(這里 為 的 次多項式)

(5)掌握對實際問題建立微分方程并求解之.

九、級數(shù)

1.考核知識點

(1)數(shù)項級數(shù)的概念,級數(shù)的斂散性及性質.

(2)正項級數(shù)的定義及其判別法.

(3)交錯級數(shù)的定義及其收斂判別法,任意項級數(shù)的絕對收斂與條件收斂.

(4)冪級數(shù)的定義,收斂半徑、收斂域.

(5)冪級數(shù)的運算和函數(shù)的連續(xù)性,和函數(shù)的求導與求積.

(6)函數(shù)展開成冪級數(shù).

(7)幾個常見函數(shù)的馬克勞林級數(shù).( )

2.考核目標和要求

(1)理解無窮級數(shù)斂散性的定義,收斂的必要條件及基本性質.

(2)熟練掌握正項級數(shù)斂散性的比較判別法,比值判別法.

(3)了解交錯級數(shù)的定義,掌握交錯級數(shù)收斂的判別法.

(4)理解任意項級數(shù)的絕對收斂與條件收斂.

(5)知道冪級數(shù)的定義,會求冪級數(shù)的收斂半徑和收斂域.

(6)了解冪級數(shù)的四則運算,和函數(shù)的連續(xù)性,會求和函數(shù)的導數(shù)和積分.

(7)掌握 的冪級數(shù)展開式,并應用它們將一些簡單函數(shù)展成 的冪級數(shù).

結束
特別聲明:1.凡本網(wǎng)注明稿件來源為“湖北自考網(wǎng)”的,轉載必須注明“稿件來源:湖北自考網(wǎng)(www.trillionsbussines.com)”,違者將依法追究責任;
2.部分稿件來源于網(wǎng)絡,如有不實或侵權,請聯(lián)系我們溝通解決。最新官方信息請以湖北省教育考試院及各教育官網(wǎng)為準!
微信公眾號 考試交流群
湖北專升本微信公眾號

湖北專升本網(wǎng)微信公眾號

隨時獲取湖北專升本政策、通知、公告以及各類學習資料、學習方法、課件。

成考院校 自考院校 專升本院校 資格證 其它熱門欄目 最新更新